PHYS 705: Classical Mechanics

General Announcement:

- Final Exam (Scheduled on Dec 13, 2021 Monday 4:30-7:10p)
 - Moving earlier to Dec o6 Monday (Study Day) 4:30-7:10p?

General Notes:

- Not all problems are corrected. Check online solution!
- Play attention to total-time derivative and indices !!!

Total-time Derivative

not just one q

Given: $g(q_1, \dots, q_n, t)$ is a function of n generalized variables and time

$$\frac{dg}{dt}(q_1, \dots, q_n, t) = \frac{dg}{dt}(q_k, t), \quad k = 1, \dots, n$$

$$\frac{dg}{dt}(q_k, t) = \sum_{k} \frac{\partial g}{\partial q_k} \dot{q}_k + \frac{\partial g}{\partial t}$$

$$= \frac{\partial g}{\partial q_k} \dot{q}_k + \frac{\partial g}{\partial t} \qquad \text{n terms in this sum}$$

In Einstein's notations, repeated indices in a product means sum

Indices

$$f_{j}(q_{k},t) \rightarrow \begin{cases} f_{1}(q_{1},\cdots,q_{n},t) \\ f_{2}(q_{1},\cdots,q_{n},t) \\ \vdots \end{cases}$$

$$j \rightarrow \text{a given index for a particular } j\text{-th}$$

$$f_{j} \text{ (free index)}$$

$$k \rightarrow \text{a running index to indicate } f_{j}$$

$$\text{depends on ALL the } q\text{'s (dummy)}$$

depends on ALL the q's (dummy index)

$$\frac{\partial}{\partial q_{j}} \left(\frac{dg}{dt} (q_{k}, t) \right) = \frac{\partial}{\partial q_{j}} \left(\sum_{k} \frac{\partial g}{\partial q_{k}} \dot{q}_{k} + \frac{\partial g}{\partial t} \right) \quad \begin{array}{l} j \rightarrow \text{a given fixed index} \\ k \rightarrow \text{a running index} \end{array}$$

$$= \frac{\partial}{\partial q_{j}} \left(\frac{\partial g}{\partial q_{k}} \dot{q}_{k} + \frac{\partial g}{\partial t} \right) \quad \text{Einstein's notation: repeated dummy indices imply sum}$$

KEEP THEM DISTINCT!

$$F(q_j,t)$$

 $\frac{\partial \dot{F}}{\partial \dot{q}_{i}}$ \rightarrow Don't just cancel the dot !!! #1:

$$\frac{\partial \dot{F}}{\partial \dot{q}_{j}} = \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{dF}{dt} \right) = \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial F}{\partial t} + \sum_{k} \frac{\partial F}{\partial q_{k}} \dot{q}_{k} \right)$$

Since F is not an explicit function of \dot{q}_i

$$\dot{F} \equiv \frac{dF}{dt}(total\ time\ derivative)$$

$$\dot{F} = \frac{dF}{dt} \text{(total time derivative)} = \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial F}{\partial t} \right) + \frac{\partial}{\partial \dot{q}_{j}} \left(\sum_{k} \frac{\partial F}{\partial q_{k}} \dot{q}_{k} \right)$$
$$= \sum_{k} \frac{\partial F}{\partial q_{k}} \frac{\partial \dot{q}_{k}}{\partial \dot{q}_{j}} + \sum_{k} \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial F}{\partial q_{k}} \right) \dot{q}_{k}$$

$$\left(\frac{\partial \dot{q}_k}{\partial \dot{q}_j} = \delta_{kj}\right)$$

$$=\sum_{k}\frac{\partial F}{\partial q_{k}}\frac{\partial \dot{q}_{k}}{\partial \dot{q}_{j}}+\sum_{k}\frac{\partial^{'}}{\partial \dot{q}_{j}}\left(\frac{\partial F}{\partial q_{k}}\right)\dot{q}_{k}$$

$$\frac{\partial \dot{F}}{\partial \dot{q}_{j}} = \frac{\partial F}{\partial q_{j}} \qquad \text{ONLY true if F does not depend} \\ \text{on } \dot{q}_{j} \text{ explicitly !}$$

$$F(q_j,t)$$

#2:
$$\frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) = \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right)$$
 \rightarrow Switching is ok here because....

$$\frac{d}{dt} \left(\frac{\partial F}{\partial q_j} \right) = \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial q_j} \right) + \sum_{k} \frac{\partial}{\partial q_k} \left(\frac{\partial F}{\partial q_j} \right) \dot{q}_k \qquad \text{Switching is only VALID for partial derivatives in general!}$$

$$= \frac{\partial}{\partial q_i} \left(\frac{\partial F}{\partial t} \right) + \sum_{k} \frac{\partial}{\partial q_i} \left(\frac{\partial F}{\partial q_k} \right) \dot{q}_k \qquad \text{partial derivatives in general!}$$

$$= \frac{\partial}{\partial q_{j}} \left(\frac{\partial F}{\partial t} + \sum_{k} \frac{\partial F}{\partial q_{k}} \dot{q}_{k} \right)$$
To "factor out" $\partial/\partial q_{j}$, we also

$$= \frac{\partial}{\partial q_{i}} \left(\frac{dF}{dt} \right)$$

need $\partial \dot{q}_k / \partial q_i = 0$ (later).

$$F(q_j,t)$$

#2x:
$$\frac{d}{dt} \left(\frac{\partial F}{\partial \dot{q}_j} \right) \neq \frac{\partial}{\partial \dot{q}_j} \left(\frac{dF}{dt} \right)$$
 \Rightarrow Switching is NOT ok because....

$$\frac{d}{dt} \left(\frac{\partial F}{\partial \dot{q}_j} \right) = 0$$

F dose not depend on any \dot{q}_j explicitly!

$$\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{dF}{dt} \right) = \frac{\partial}{\partial \dot{q}_{j}} \left[\sum_{k} \frac{\partial F}{\partial q_{k}} \dot{q}_{k} + \frac{\partial F}{\partial t} \right]$$

$$= \sum_{k} \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial F}{\partial q_{k}} \right) \dot{q}_{k} + \left(\frac{\partial F}{\partial q_{k}} \right) \left(\frac{\partial \dot{q}_{k}}{\partial \dot{q}_{j}} \right) + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial F}{\partial t} \right)$$

$$= \frac{\partial F}{\partial q_{j}} \neq \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{q}_{j}} \right) = 0 \qquad \text{When in doubt } \Rightarrow \text{ write them out explicitly !}$$

#2xx: $Q 1.7 \rightarrow$ Switching is NOT ok for the following also

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) \neq \frac{\partial}{\partial \dot{q}_j} \left(\frac{dT}{dt} \right)$$

where
$$T(q_j, \dot{q}_j, t)$$

Note #3:

$$\frac{\partial \dot{q}_{j}}{\partial q_{k}} = 0$$

- Typically, we have $\left(q_j,\dot{q}_j,t\right)$ as our standard set of *independent* variables. Some function might depend on all or a subset of them.
- $q_j(t)$ & $\dot{q}_j(t)$ are typically considered to be a function of time only unless specifically specified.

Starting with the Nelson's form of the E-L Eq,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} - 2 \frac{\partial T}{\partial q_{j}} = Q_{j} \qquad j = 1, \dots, n$$

→ a scalar equation for each of the generalized coordinates

We first evaluate,

$$\dot{T} = \frac{dT}{dt} = \sum_{i=1}^{n} \left[\frac{\partial T}{\partial q_i} \dot{q}_i + \frac{\partial T}{\partial \dot{q}_i} \ddot{q}_i \right] + \frac{\partial T}{\partial t} \qquad T = T(q_i, \dot{q}_i, t)$$

or
$$\frac{dT}{dt} = \frac{\partial T}{\partial q_i} \dot{q}_i + \frac{\partial T}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial T}{\partial t}$$
 (in **Einstein's notations**)

Then, we take the partial of \dot{T} with respect to \dot{q}_i ,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} = \frac{\partial}{\partial \dot{q}_{j}} \left\{ \sum_{i=1}^{n} \left[\frac{\partial T}{\partial q_{i}} \dot{q}_{i} + \frac{\partial T}{\partial \dot{q}_{i}} \ddot{q}_{i} \right] + \frac{\partial T}{\partial t} \right\}$$

$$\sum_{i} \left[\frac{\partial T}{\partial q_{i}} \frac{\partial \dot{q}_{i}}{\partial \dot{q}_{j}} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial q_{i}} \right) \dot{q}_{i} \right]$$

$$= \frac{\partial T}{\partial q_{j}} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial q_{i}} \right) \dot{q}_{i} \quad \text{(in Einstein's notations)}$$

Similarly, we take partial of the other two terms wrt to \dot{q}_i ,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} = \frac{\partial}{\partial \dot{q}_{j}} \left\{ \sum_{i=1}^{n} \left[\frac{\partial T}{\partial q_{i}} \dot{q}_{i} \right] + \frac{\partial T}{\partial \dot{q}_{i}} \ddot{q}_{i} \right] + \frac{\partial T}{\partial t} \right\}$$

$$\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) \ddot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial t} \right) \quad \text{(in Einstein's notations)}$$

$$\text{note: } \frac{\partial \ddot{q}_{i}}{\partial \dot{q}_{j}} = 0 \quad \forall i$$

So, finally, we have,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} = \frac{\partial T}{\partial q_{j}} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial q_{i}} \right) \dot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) \ddot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) \ddot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial t} \right)$$

Focusing on the last three terms,

$$\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial q_{i}} \right) \dot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) \ddot{q}_{i} + \frac{\partial}{\partial \dot{q}_{j}} \left(\frac{\partial T}{\partial t} \right)$$

Switch the order of the partial derivatives,

$$\frac{\partial}{\partial q_i} \left(\frac{\partial T}{\partial \dot{q}_j} \right) \dot{q}_i + \frac{\partial}{\partial \dot{q}_i} \left(\frac{\partial T}{\partial \dot{q}_j} \right) \ddot{q}_i + \frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{q}_j} \right)$$

This is in the same form of the full time derivative of $\frac{\partial I}{\partial \dot{q}_i}$, i.e.,

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) = \frac{\partial}{\partial q_{i}} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) \dot{q}_{i} + \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) \ddot{q}_{i} + \frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right)$$

So, collapsing the last three terms into $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right)$ we have,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} = \frac{\partial T}{\partial q_{j}} + \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right)$$

Putting it back into the Nelson's form, we then have,

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} - 2 \frac{\partial T}{\partial q_{j}} = \frac{\partial T}{\partial q_{j}} + \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - 2 \frac{\partial T}{\partial q_{j}} = Q_{j}$$

This immediately gives the standard form of the E-L Eq,

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = Q_{j}$$

Summary of Reminders:

- Pay attention in doing $\frac{d}{dt}$ and $\frac{\partial}{\partial t}$
- Pay attention to what are the independent variables for a function, e.g.,

$$f = f(q_1, \dots, q_N, \dot{q}_1, \dots, \dot{q}_N, t)$$

 \rightarrow Obviously, $\{q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t\}$ will *implicitly* depend on each other through f but they are NOT *explicitly* depended on each other.

$$\frac{\partial q_1}{\partial q_2} = \frac{\partial \dot{q}_2}{\partial q_1} = \frac{\partial q_1}{\partial \dot{q}_1} = \dots = 0$$

→ Using indices as shorthand notations:

$$f = f\left(q_j, \dot{q}_j, t\right)$$

with the understanding that $j = 1, \dots, n$

Summary of Reminders:

→ In taking total derivatives of the function, remember to include all dependences, e.g., with $F = F(q_j, \dot{q}_j, t)$

$$\frac{dF}{dt} = \sum_{j=1}^{n} \left[\frac{\partial F}{\partial q_j} \frac{dq_j}{dt} \right] + \sum_{j=1}^{n} \left[\frac{\partial F}{\partial \dot{q}_j} \frac{d\dot{q}_j}{dt} \right] + \frac{\partial F}{\partial t}$$

→ A shorthand notation using the **Einstein's notations**, we can use

$$\frac{dF}{dt} = \frac{\partial F}{\partial q_i} \dot{q}_j + \frac{\partial F}{\partial \dot{q}_j} \ddot{q}_j + \frac{\partial F}{\partial t}$$

with the understanding that "repeated index in a given term means sum"

→ In general, you CANNOT switch order in $\frac{d}{dt} \frac{\partial F}{\partial q} \longleftrightarrow \frac{\partial}{\partial q} \frac{dF}{dt}$

Summary of Reminders:

- Pay attention to indices, as in the following expression

$$\frac{\partial \dot{T}}{\partial \dot{q}_{j}} = \frac{\partial}{\partial \dot{q}_{j}} \left\{ \sum_{i=1}^{n} \left[\frac{\partial T}{\partial q_{i}} \dot{q}_{i} + \frac{\partial T}{\partial \dot{q}_{i}} \ddot{q}_{i} \right] + \frac{\partial T}{\partial t} \right\}$$

or

$$\frac{\partial \dot{T}}{\partial \dot{q}_{i}} = \frac{\partial}{\partial \dot{q}_{i}} \left\{ \frac{\partial T}{\partial q_{i}} \dot{q}_{i} + \frac{\partial T}{\partial \dot{q}_{i}} \ddot{q}_{i} + \frac{\partial T}{\partial t} \right\}$$
 in Einstein's notation

 \rightarrow *i* is the dummy running index for the sum and *j* is a free index of the expression

Physics Related notes:

HW1.3 (Newton's 2nd & 3rd Laws and logic flow)

- Newton's 2nd Law for two particles

$$m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i^{net}$$

$$m_1\ddot{\mathbf{r}}_1 = \mathbf{F}_1^e + \mathbf{F}_{21}$$

$$m_2\ddot{\mathbf{r}}_2 = \mathbf{F}_2^e + \mathbf{F}_{12}$$

$$m_2\ddot{\mathbf{r}}_2 = \mathbf{F}_2^e + \mathbf{F}_{12}$$

- Add the two equations to calculate total momentum for the system:

$$m_1\ddot{\mathbf{r}}_1 + m_2\ddot{\mathbf{r}}_2 = \mathbf{F}_1^e + \mathbf{F}_{21} + \mathbf{F}_2^e + \mathbf{F}_{12}$$

$$M\ddot{\mathbf{R}} = \mathbf{F}_{1}^{e} + \mathbf{F}_{2}^{e} + \mathbf{F}_{21} + \mathbf{F}_{12} = \mathbf{F}_{tot}^{e} + \mathbf{F}_{21} + \mathbf{F}_{12}$$

- Now, we want Eq. 1.22, Newton's 2nd Law for a system of particles, to be true,

$$M\ddot{\mathbf{R}} = \mathbf{F}_{tot}^e$$

$$M\ddot{\mathbf{R}} = \mathbf{F}_{tot}^e \qquad \qquad \mathbf{F}_{21} + \mathbf{F}_{12} = 0$$

Work-energy theorem: the effect of varying mass

$$W_{12} = \int_{1}^{2} \mathbf{F} \cdot \mathbf{dx} = \int_{1}^{2} m \frac{d\mathbf{v}}{dt} \cdot \mathbf{v} dt = \int_{1}^{2} \frac{m}{2} d\left(v^{2}\right) = \frac{m}{2} \left(v_{2}^{2} - v_{1}^{2}\right) \text{ (only for constant } m)$$

 \rightarrow $W_{rocket} \neq \Delta K_{rocket}$ for m being a function of time

(check out: R. Newburgh, "Work-energy theorem: the effect of varying mass")

LECTURE REVIEW

D'Alembert's Principle

$$\sum_{i} \left(\mathbf{F}_{i}^{(a)} - \dot{\mathbf{p}}_{i} \right) \cdot \delta \mathbf{r}_{i} = 0$$

To solve for EOM using the D'Alembert's Principle ...

We need to look into changing variables to a set of *independent* **generalized coordinates** so that we have

$$\sum_{j} (?)_{j} \cdot \delta q_{j} = 0$$

Then, we can claim the coefficients $(?)_j$ in the sum to be independently equal to zero and the **Euler-Lagrange equation** will give an explicit expression for the EOM as:

$$(?)_i = 0$$

E-L Equation for Conservative Forces

Case 1: $\mathbf{F}_{i}^{(a)}$ derivable from a scalar potential

$$\mathbf{F}_{i}^{(a)} = -\nabla_{i}U(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}, t) \quad \text{(note: } U \text{ not depend on velocities)}$$

"Generalized Forces"

$$Q_{j} \equiv \sum_{i} \mathbf{F}_{i}^{(a)} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \qquad \longrightarrow \qquad Q_{j} = -\frac{\partial U}{\partial q_{j}}$$

E-L Equation for Conservative Forces

We then define the Lagrangian function L = T - U and get the desired Euler-Lagrange's Equation:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0$$

Note: there is no unique choice of L which gives a particular set of equations of motion. If G(q, t) is any differentiable function of the generalized coordinate, then

$$L'(q,\dot{q},t) = L(q,\dot{q},t) + \frac{dG(q,t)}{dt}$$

will be a different Lagrangian resulting in the same EOM.

E-L Equation for Velocity Dependent Forces

Case 2: *U* is velocity-dependent, i.e., $U(q_i, \dot{q}_i, t)$

In this case, we redefine the generalize force as,

$$Q_{j} = -\frac{\partial U}{\partial q_{j}} + \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{q}_{j}} \right)$$

Then, one can have the same form for the Lagrange's Equation with L = T - U,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) - \frac{\partial L}{\partial q_{i}} = 0$$

E-L Equation for General Forces

Case 3 (General): Applied forces can't be derived from a potential In general, one can still write down the Lagrange's Equation as,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{j}} \right) - \frac{\partial L}{\partial q_{j}} = Q_{j}$$

Here,

- L contains the potential from conservative forces as before and
- Q_i represents the forces not arising from a potential

Calculus of Variations: The Problem

Determine the function y(x) such that the following integral is min(max)imized.

$$I = \int_{x_A}^{x_B} F\{y(x), y'(x); x\} dx$$

Comments:

- 1. Notation: x is the *independent* variable (x = t in our mech prob)
 - y(x) is a function of x and y'(x) = dy/dx
 - •F{ } is called a **functional** on y(x)
- 2. Intuition: Let say y(x) denote a route in the x-y plane and I is the amount of gas needed for the trip. The problem is to find the route which uses the least gas.

Calculus of Variations

Consider a family of functions $\{y(\alpha, x)\}$ parameterized by α .

$$y(\alpha, x) = y(0, x) + \alpha \eta(x)$$

- α is a parameter
- $\eta(x)$ is a C^2 -smooth variation at x
- $\bullet \ \eta(x_A) = \eta(x_A) = 0$

Note: $y(\alpha, x_A) = y_A$ $y(\alpha, x_B) = y_B$

for all α , i.e., all sampled paths has the same end points, x_A and x_B

y(0,x) is the desired path

Calculus of Variations

A necessary, but not sufficient, condition for the min(max)imization of *I* is:

$$\left. \frac{dI}{d\alpha} \right|_{\alpha=0} = 0$$
 where $I = \int_{x_A}^{x_B} F\{y(x), y'(x); x\} dx$

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$$

 $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$ Euler-Lagrange Equation (1744) (fundamental lamma of Calc. of Var.)

This is a diff eq whose solution y(x) gives the function we seek to min(max)imize I.